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Suppose G is a molecular graph with atoms labeled by numbers 1, 2, … n. The adjacency matrix A = [aij] of G is a 0-1 
matrix with aij = 1 if and only if there is a bond connecting atoms i and j. A Euclidean graph associated to a molecule M is 
defined by a weighted graph with the adjacency matrix D = [dij], where for i ≠ j dij is the Euclidean distance between the 
nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. In this work a new method is presented 
by which it is possible to calculate the symmetry of fullerenes. 
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1. Introduction 
 
Symmetry generally conveys two primary meanings. 

The first is an imprecise sense of harmonious or 
aesthetically pleasing proportionality and balance such that 
it reflects beauty or perfection. The second meaning is a 
precise and well-defined concept of balance or "patterned 
self-similarity" that can be demonstrated or proved 
according to the rules of a formal system: by geometry, 
through physics or otherwise. 

Since the discovery of the first fullerene molecule in 
1985, the fullerenes have been objects of interest to 
scientists all over the world [1]. The name fullerene was 
given to cubic carbon molecules in which the atoms are 
arranged on a sphere in pentagons and hexagons. Many 
properties of fullerene molecules can be studied using 
mathematical tools and results [2]. 

Let F be a fullerene molecule with exactly p 
pentagons, h hexagons, n carbon atoms and m bonds. 
Since each atom lies in exactly 3 faces and each edge lies 
in 2 faces, the number of atoms is n, the number of edges 
is m = 3/2n and the number of faces is f = 2m = 3n This 
implies that such molecules made up entirely of n carbon 
atoms and having 2m hexagonal faces. 

In algebra, a group action is a way of describing 
symmetries of objects using groups. The essential 
elements of the object are described by a set and the 
symmetries of the object are described by the symmetry 
group of this set, which consists of bijective 
transformations of the set. In this case, the group is also 
called a permutation group. A group action is a flexible 
generalization of the notion of a symmetry group in which 
every element of the group "acts" like a bijective 
transformation (or" symmetry") of some set, without being 
identified with that transformation. This allows for a more 
comprehensive description of the symmetries of an object, 
such as a polyhedron by allowing the same group to act on 
several different sets, such as the set of vertices ,the set of 
edges and the set of faces of the polyhedron. If G is a 
group and X is a set then a group action may be defined as 

a group homomorphism from G to the symmetric group  of  
X .The action assigns a permutation of X to each element 
of the group in such a way that i) the permutation of X 
assigned to the identity element of G is the identity 
transformation of X; ii) the permutation of X assigned to a 
product gh of two elements of the group is the composite 
of the permutations assigned to g and h. 

A permutation matrix is a square matrix whose entries 
are all 0’s and 1’s, with exactly one 1 in each row and 
exactly one 1 in each column. Examples of these matrices 
are as follows: 

 
0 0 1 0

0 1 0
0 1 0 0 0 1

0 0 1
1 0 1 0 0 0

1 0 0
0 1 0 0

⎛ ⎞
⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠

 

 
Multiplying any matrix A by a permutation matrix P 

on the left has the effect of rearranging the rows of A. The 
identity I is a permutation matrix, every elementary matrix 
is a permutation matrix and product of elementary 
matrices is again a permutation matrix. In fact, every 
permutation matrix is a product of elementary matrices, 
because you can arrange the rows in any order by a 
sequence of two-row exchanges. Finally, the inverse of a 
permutation matrix is the same as its transpose:  P-1 = PT. 

Randic [3,4] showed that a graph can be depicted in 
different ways such that its point group symmetry or three 
dimensional perception may differ, but the underlying 
connectivity symmetry is still the same as characterized by 
the automorphism group of the graph. However, the 
molecular symmetry depends on the coordinates of the 
various nuclei which relate directly to its three 
dimensional geometry. Although the symmetry as 
perceived in graph theory by the automorphism group of 
the graph and the molecular group are quite different, it 
showed by Balasubramanian [5-10] that the two 
symmetries are connected. 
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2. Main results 
 
Suppose G is a molecular graph with atoms labeled by 

numbers 1, 2, … n. The adjacency matrix A = [aij] of G is 
a 0-1 matrix with aij = 1 if and only if there is a bond 
connecting atoms i and j. A Euclidean graph associated to 
a molecule M is defined by a weighted graph with the 
adjacency matrix D = [dij], where for i ≠ j dij is the 
Euclidean distance between the nuclei i and j. In this 
matrix dii can be taken as zero if all the nuclei are 
equivalent. 

Our computations of the symmetry properties of 
molecules were carried out with the use of GAP [11]. GAP 
contains several functions for working with finite groups. 
In this paper, we use freely these functions and the reader 
is encouraged to consult the manual of GAP, as well as 
papers by Ashrafi and his co-workers [12-16]. We also 
encourage the readers to consult papers [17-30] for 
background material as well as basic computational 
techniques. 

Consider the equation (Pσ)tAPσ = A, where A is the 
adjacency matrix of the weighted graph G. Suppose 
Aut(G) = {σ1, σ2,…, σm}. The matrix SG = [sij], where               
sij = σi(j) is called a solution matrix for G. Clearly, for 
computing the automorphism group of G, it is enough to 
calculate a solution matrix for G.  

 

 
 

Fig. 1. A Polyhex Toroidal Fullerene. 
 

Suppose G is a group and N is a subgroup of G. N is 
called a normal subgroup, if it is invariant under 
conjugation; that is, for each element n in N and each g in 
G, the element gng−1 is still in N. Normal subgroups are 
important because they can be used to construct quotient 
groups from a given group. A semidirect product describes 
a particular way in which a group can be put together from 
two subgroups, one of which is normal. Let G be a group, 
N a normal subgroup of G and H a subgroup of G. We say 
that G is a semidirect product of N and H, or that G splits 
over N, if every element of G can be written in one and 
only one way as a product of an element of N and an 
element of H. 

Suppose L is the 2-dimensional lattice of a Toroidal 
fullerene containing p vertical zig-zag and q row, Fig. 2. It 
is clear that p is even. Put  

 
a = (1, 2, …, p/2),  
b = (2 , p/2)(3 , p/2 − 1)(4 , p/2 − 2)…(p/4 , p/4 + 2),  
(2 , p/2)(3 , p/2 − 1)(4 , p/2 −2)…((p/2 + 1)/2,(p/2 + 3)/2),  
 
when p/2 is even or odd, respectively. Then the group H 
generated by a and b is a subgroup of the symmetry group 
of a polyhex carbon nanotorus V. But a vertical plane 
determines a symmetry element c of V such that c ∉ H. 
Consider V = <H,c> then V is the symmetry of the carbon 
polyhex nanotorus. Since |H| = 1/2|V|, H is a normal 
subgroup of V. This implies that V is a semidirect product 
of H by a cyclic group of order 2. Thus the group V of the 
symmetry of a polyhex nanotorus is a semidirect product 
of Dp/2 by Z2, where Z2 is the cyclic group of order 2.  
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